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Abstract 

The concept of lattice complexes is compared with 
the concept of orbit types, and the correspondences 
and differences are worked out in some detail. For 
this, it turned out to be necessary to distinguish 
whether a set of symmetrically equivalent points is 
regarded as attached to or as detached from its gen- 
erating space group. The terms 'crystallographic orbit' 
and 'point configuration' used as synonyms so far are 
applied here to discriminate between these distinct 
meanings. On this basis, the terminology within both 
concepts is redefined stressing the aspect of 
equivalence classes. After that, the relations between 
non-characteristic orbits and limiting complexes are 
carefully discussed for the first time. 

When trying to perform such a comparison the 
authors noted that so far 'point configuration' as well 
as 'crystallographic orbit' have been used with two 
meanings: (1) for sets of points equivalent with 
respect to a given space group, i.e. in the mathematical 
sense of 'orbit '; (2) for such sets of points, but 
detached from their generating space groups. The 
second meaning is referred to, for example, if one 
just speaks of a primitive cubic point lattice. As within 
both concepts both meanings are required one has to 
distinguish between them and to use different "terms 
for their designation. This is done here by restricting 
the term 'crystallographic orbit' to the first, the term 
'point configuration' to the second meaning. On this 
basis all other terms from both concepts are redefined, 
and subsequently a detailed comparison is given. 

1. Introduction 

In the past the terms 'point configuration' (Fischer 
& Koch, 1974) and 'crystallographic orbit' (Mat- 
sumoto & Wondratschek, 1979) have been used as 
synonyms for sets of points in R 3 that are equivalent 
with respect to a space group. Such sets of points 
have been classified in two different ways: (1) accord- 
ing to the concept of lattice complexes (Git- 
terkomplexe) and of limiting complexes, which goes 
back to Hermann (1935) and has been defined more 
strictly by Fischer & Koch (1974); (2) according to 
the concept of types of crystallographic orbits and of 
non-characteristic orbits introduced by Wondrat- 
schek (1976). 

Both aspects have been adopted in International 
Tables for Crystallography (1983) [for short: IT 
(1983)].* They are strongly related but not identical. 
Therefore, it seems worthwhile and necessary to com- 
pare the classes originating from both concepts and, 
especially, to work out the differences. 

* The following papers are also related to these topics: Burzlatt 
& Zimmermann (1974); Engel (1983); Engel, Matsumoto, Stein- 
mann & Wondratschek (1984); Fischer, Burzlaff, Hellner & Don- 
nay (1973); Fischer & Koch (1978, 1983); Koch (1974); Koch & 
Fischer (1975, 1978); Steinmann (1984); Wondratschek (1980). 
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2. Crystallographic orbits, Wyckoff positions, Wyckoff 
sets and types of Wyckoff sets 

In mathematics, orbit is a very general group-theo- 
retical term describing any set of objects that are 
mapped onto each other by the action of a group. In 
fact orbits are always used in crystallography where 
equivalence classes are defined by means of group 
action (e.g. a space-group type as the orbit of a space 
group under the action of the affine group). In the 
present context, however, the term (crystallographic) 
orbit will be used in a much more restricted sense as 
proposed by Wondratschek (1976): 

From any point of R 3 the symmetry operations of 
a given space group G generate an infinite set of 
points, called a crystallographic orbit with respect to 
G or, for short, a crystallographic orbit. The space 
group G is called the generating space group of the 
orbit. 

Each point of a crystallographic orbit defines 
uniquely a largest subgroup of G, which maps that 
point onto itself, its site-symmetry group. The site- 
symmetry groups belonging to different points out of 
the same crystallographic orbit are conjugate sub- 
groups of G. 

© 1985 International Union of Crystallography 
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The crystallographic orbits with respect to a given 
space group G are equivalence classes within the set 
of points of R 3. It is also possible, however, to define 
equivalence relations on the set of all crystallographic 
orbits of G: 

Two crystallographic orbits of a space group G 
belong to the same Wyckoffposition if and only if the 
site-symmetry groups of any two points from the first 
and the second orbit are conjugate subgroups of G 
(i.e. if the two site-symmetry groups are mapped onto 
each other by an inner automorphism of G). 

The following definition results in a coarser classifi- 
cation of crystallographic orbits: 

Two crystallographic orbits of a space group G 
belong to the same Wyckoff set if and only if the 
site-symmetry groups of any two points from the first 
and the second orbit are conjugate subgroups of the 
affine normalizer of G (i.e. if the two site-symmetry 
groups are mapped onto each other by an automor- 
phism of G). 

Accordingly, all orbits of the same Wyckoff posi- 
tion belong to one and the same Wyckoff set. There- 
fore, the assignment of orbits to Wyckoff sets also 
defines an equivalence relation on the Wyckoff posi- 
tions of a space group. The relationship between 
Wyckoff positions and Wyckoff sets was first tabu- 
lated by Koch & Fischer (1975). Corresponding infor- 
mation is also given in IT (1983). 

For the set of all space groups of a given type it 
seems desirable to transfer the terms 'Wyckoff posi- 
tion' and 'Wyckoff set' from a single space group to 
the whole type. For the following reason this is not 
possible for Wyckoff positions: two space groups of 
the same type can be mapped onto each other by 
infinitely many isomorphisms or affine mappings. 
Each isomorphism results in a unique relation 
between the Wyckoff positions of the two groups, but 
different isomorphisms may give rise to different rela- 
tions, and then the Wyckoff positions of the same 
Wyckoff set may change their roles. Such difficulties 
cannot occur for Wyckoff sets, as all Wyckoff sets of 
a space group differ in their group-theoretical rela- 
tions to the space group. 

Therefore, the Wyckoff sets may be classified as 
follows: Two Wyckoff sets of space groups of the 
same type belong to the same type of Wyckoff sets if 
and only if they are related by an isomorphism (affine 
mapping) of the two space groups. The 219 types of 
space groups in R 3 give rise to 1128 types of Wyckoff 
sets. They define in addition equivalence classes 
within the set of Wyckoff positions and within the 
set of crystallographic orbits belonging to that space- 
group type. 

3. Point configurations and lattice complexes 

If Wyckoff positions or Wyckoff sets from space 
groups of different types are compared, another kind 

of equivalence relationship between crystallographic 
orbits has to be used: 

Two crystallographic orbits are configuration- 
equivalent if and only if their sets of points are iden- 
tical. 

A point configuration is the set of all points that is 
common to a class of configuration-equivalent crys- 
tallographic orbits. This definition uniquely assigns 
crystallographic orbits to point configurations, but 
not vice versa, as illustrated by the following example: 
Any point configuration that forms a primitive cubic 
lattice refers to crystallographic orbits, for example, 
of the types of Wyckoff sets Pm3m l(a, b), Fm3 8(c) 
and P432 8(g) with x = ~. The generating space group 
cannot be recognized by looking at the point con- 
figuration. 

The inherent symmetry of a point configuration is 
the most comprehensive space group that maps the 
point configuration onto itself. Accordingly, one crys- 
tallographic orbit out of each class of configuration- 
equivalent ones stands out because its generating 
space group coincides with the inherent symmetry of 
its point configuration. 

The concept of configuration-equivalence may also 
be applied to types of Wyckoff sets: 

Two types of Wyckoff sets are configuration- 
equivalent if and only if for each crystallographic 
orbit out of one type of Wyckoff sets there exists a 
configuration-equivalent crystallographic orbit out of 
the other type of Wyckoff sets, and vice versa. 

All types of Wyckoff sets differ with respect to their 
crystallographic orbits, but the sets of point configu- 
rations related to configuration-equivalent types of 
Wyckoff sets coincide: 

A lattice complex is the set of all point configu- 
rations that is common to a class of configuration- 
equivalent types of Wyckoff sets. 

For the space groups of R 3 these definitions lead 
to 402 classes of configuration-equivalent types of 
Wyckoff sets and to 402 lattice complexes. 

One has to bear in mind that configuration- 
equivalent crystallographic orbits do not necessarily 
belong to configuration-equivalent types of Wyckoff 
sets. In the above example the types of Wyckoff sets 
Pm3m l (a ,b )  and Fro3 8(c) are configuration- 
equivalent; the type of Wyckoff sets P432 8(g), 
however, contains further crystallographic orbits 
(for x ~ ) ,  which do not form cubic primitive 
lattices. Consequently, lattice complexes are not 
equivalence classes of point configurations, but a 
point configuration may belong to several lattice 
complexes. 

It follows from the definitions that each type of 
Wyckoff sets is uniquely assigned to one lattice com- 
plex. Therefore, it makes sense to speak of the types 
of Wyckoff sets, the Wyckoff sets, the Wyckoff posi- 
tions and the crystallographic orbits of a lattice 
complex. - 
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Among the different types of Wyckoff sets of a 
lattice complex, one stands out because its crystallo- 
graphic orbits show the highest site symmetry. This 
one is called the characteristic type of Wyckoffsets of 
that lattice complex, the corresponding space-group 
type its characteristic space-group type. All other types 
of Wyckoff sets are referred to as non-characteristic. 
The term 'characteristic' may also be transferred to 
single Wyckoff sets out of the characteristic type. 

Originating from Hermann [Internationale Tabellen 
zur Bestimmung yon Kristallstrukturen (1935), for 
short: IT (1935)], one Wyckoff position out of each 
characteristic Wyckoff set has arbitrarily been chosen 
to represent its lattice complex and, therefore, has 
also been called characteristic. The lattice complex 
of all cubic primitive point lattices, for example, has 
been designated by its 'characteristic Wyckoff posi- 
tion' Pm3m l(a)  (cf. IT, 1935, 1983). This arbitrari- 
ness is avoided by symbolizing a lattice complex by 
its characteristic (type of) Wyckoff set(s). 

4. Limiting complexes and comprehensive complexes 

As has been stated above lattice complexes define 
equivalence classes of orbits but not of point configu- 
rations. This property gave rise to the concept of 
limiting complexes and comprehensive complexes 
(Fischer & Koch, 1974; Koch, 1974; IT, 1983). 

For morphological crystal forms aoa almost 
analogous situation exists. A certain tetragonal prism, 
for example, may be a general representative of the 
crystal form 'tetragonal prism' on the one hand or it 
may be a special representative of the crystal forms 
'tetragonal pyramid' or 'tetragonal bisphenoid' on the 
other hand. In the first case the generating point group 
may belong to the types 4/mmm, 422, 4/m or 42m 
(with site symmetry 2 for each face), in the second 
case the types of the generating point groups are 4ram 
or 4 and 42m (site symmetry m) or 4, respectively. 
The crystal form 'tetragonal prism' is a limiting form 
of the crystal forms 'tetragonal pyramid' and 
'tetragonal bisphenoid'. 

If a first lattice complex forms a true subset of a 
second one, i.e. if each point configuration of the first 
lattice complex also belongs to the second one, then 
the first one is called a limiting complex of the second 
one and the second complex is called a comprehensive 
complex of the first one. 

Furthermore, two lattice complexes without a limit- 
ing-complex relationship between them may have a 
non-empty intersection. Then the point configu- 
rations of the intersection form another lattice com- 
plex or, in very exceptional cases, two other lattice 
complexes (for a proof see Koch, 1974). 

For each point configuration of a given lattice 
complex its inherent symmetry may be compared with 
the generating space group of the corresponding crys- 
tallographic orbit from the characteristic type of 

Wyckoff sets. In general, these groups coincide. All 
point configurations belonging to a limiting complex, 
however, stand out by a more comprehensive inherent 
symmetry. Examples: (1) The cubic lattice complex 
with characteristic type of Wyckoff sets 143d 16(c) 
xxx has the two limiting complexes Im3m 2(a) 000 
and Ia3d 16(b) 1 1 1 g g. The crystallographic orbits from 
Im3m 2(a) and from I43d 16(c) with x = 0 are con- 
figuration equivalent, and so are the orbits from Ia3d 
16(b) and from I43d 16(c) with x=~. (2) The 
tetragonal lattice complex with characteristic type of 
Wyckoff sets 141/amd 4(a, b) is a comprehensive 
complex of the cubic complex Fd3m 8(a, b). Each 
crystallographic orbit of Fd3m 8(a, b) is configu- 
ration-equivalent to a crystallographic orbit of a 
special space group I4~/amd with axial ratio c~ a = 4c2. 
(3) The intersection of the two lattice complexes Im3 
24(g) and I7~3m 24(g) consists of all point configu- 
rations belonging to Im3m 24(h), i.e. each point con- 
figuration out of this intersection refers to a crystallo- 
graphic orbit from Im3m 24(h) Oxx and in addition 
to an orbit from lm3 24(g) Oyz with y = z and to 
another one from I43m 24(g) xxz with z = 0. 

5. Characteristic and non-characteristic orbits, orbit 
types 

The generating space group of any crystallographic 
orbit may be compared with the inherent symmetry 
of its point configuration. If both groups coincide, 
the orbit is called a characteristic crystallographic orbit, 
otherwise it is named a non-characteristic crystallo- 
graphic orbit (Wondratschek, 1976). If the inherent 
symmetry group contains translations additional to 
those of the generating space group the term extraor- 
dinary orbit has been used. Each class of configu- 
ration-equivalent orbits contains exactly one charac- 
teristic crystallographic orbit. 

The set of all point configurations in R 3 may be 
divided into equivalence classes by means of their 
inherent symmetry. Two point configurations belong 
to the same symmetry type of point configurations if 
and only if their characteristic crystallographic orbits 
belong to the same type of Wyckoff sets. 

This equivalence relation results in 402 symmetry 
types of point configurations, which differ from the 
402 lattice complexes because of the unique or non- 
unique assignment of point configurations (cf. below). 
As each crystallographic orbit is uniquely related to 
one point configuration, each equivalence relation- 
ship on the set of all point configurations implies an 
equivalence relationship on the set of all crystallo- 
graphic orbits: Two crystallographic orbits are as- 
signed to the same orbit type if and only if the corre- 
sponding point configurations belong to the same 
symmetry type. 

In contrast to lattice complexes, symmetry types of 
point configurations and orbit types cannot be used 
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to define equivalence relations on Wyckoff positions, 
Wyckoff sets and types of Wyckoff sets. Two crystallo- 
graphic orbits out of the same Wyckoff position 
belong to different orbit types, i f -  owing to special 
coordinate values - they differ in the inherent sym- 
metry of their point configurations. In addition, two 
analogous crystallographic orbits from different space 
groups of the same type (i.e. two orbits with the same 
coordinate description) may differ in their orbit types 
owing to a specialization of the metrical parameters. 
Examples: (1) Crystallographic orbits from P3,3m 
4(e) xxx with x =~ or x =3 belong to another orbit 
type than those with x ~ ~, 3, because the inherent 
symmetry of their 12oint configurations is Fm3m 
4(a,b) instead of P43m 4(e). (2) In general, the 
inherent symmetry of point configurations corre- 
sponding to the type of Wyckoff sets I4/m 2(a, b) 
is I4/mmm 2(a,b).  For space grQups with the 
special axial ratio c/a = 1 or c/a = 42, however, the 
inherent symmetry of the respective point configura- 
tions is Im3m 2(a) or Fm3m 4(a, b), respectively. 

6. Comparison of the two concepts 

The common intention of the lattice-complex concept 
as well as of the orbit-type concept is to subdivide 
the sets of all point configurations and of all crystallo- 
graphic orbits of R 3 into subsets with certain common 
properties. Some of these subsets are identical in both 
concepts, but most of them are not. As similar but 
not identical symmetry considerations are used within 
both concepts, each lattice complex is uniquely 
related to a certain symmetry type of point configu- 
rations and to a certain orbit type, and vice versa. 
Therefore, both concepts result in the same number 
of subsets: there exist 402 lattice complexes, 402 
symmetry types of point configurations and 402 orbit 
types. The differences between the subsets are caused 
by the different properties of the point configurations 
and crystallographic orbits used for the classifica- 
tions. 

The concept of orbit types is entirely based on the 
inherent symmetry of point configurations: crystallo- 
graphic orbits are regarded as isolated entities, i.e. 
detached from their Wyckoff positions and their types 
of Wyckoff sets. On the contrary, lattice complexes 
result from a hierarchy of classifications of crystallo- 
graphic orbits into Wyckoff positions, Wyckoff sets, 
types of Wyckoff sets and classes of configuration- 
equivalent types of Wyckoff sets, i.e. the crystallo- 
graphic orbits are always considered as being embed- 
ded in their types of Wyckoff sets, and the inherent 
symmetry of their point configurations is disregarded. 
The differences between the two concepts become 
clear if limiting complexes are considered. 

There exist 49 lattice complexes, which completely 
coincide with the corresponding symmetry types of 
point configurations. These are exactly those that 

contain neither limiting complexes due to special 
coordinates nor limiting complexes due to specialized 
metric. As tables of non-characteristic orbits by Engel, 
Matsumoto, Steinmann & Wondratschek (1984) show 
there exist 64 lattice complexes without limiting com- 
plexes due to specialized coordinates. These com- 
plexes have further been investigated with respect to 
limiting complexes due to metrical specialization. 
Among them there are 38 cubic lattice complexes and 
eight hexagonal ones, which - for principal reasons 
- do not allow any metrical specialization. The cubic 
ones have already been derived by Koch (1974) and 
may be found in that paper. For the hexagonal ones 
the characteristic types of Wyckoff sets are P62.422 
3(c, d), P62,422 6(g, h), P6/mmm l(a, b), P6/mmm 
2(c,a), P6/mmm 3(f,g),  P6/mmm 6(/,m), 
P6/mmm 12(p, q), P63/mmc 2(c, d). 

15 of the remaining 18 lattice complexes are 
invafiant ones. It is already known and easy to recog- 
nize that all 15 contain limiting complexes, at least 
e.g. hexagonal or cubic ones. Examples: (1) The lat- 
tice complex of all triclinic point lattices includes as 
limiting complexes the 13 other lattice complexes 
corresponding to Bravais lattices. (2) The lattice com- 
plex of all orthorhombic diamond patterns [Fddd 
8(a, b)] includes as limiting complexes those of the 
tetragonal and the cubic diamond patterns [I41/amd 
4(a, b) and Fd3m 8(a, b), respectively]. 

The lastthree of the 64 lattice complexes mentioned 
above are P4/mmm 4(1-o), P42/mmc 4( j -m)  and 
14/mmm 8(i,j). They complete the list of the 49 
lattice complexes coinciding with their symmetry 
types of point configurations. This has been proved 
by inspecting the minimal cubic supergroups of 
P4/ mmm, P42/mine and 14/mmm.* 

353 lattice complexes are more comprehensive than 
the corresponding symmetry types of point configu- 
rations. In such a case each additional point configu- 
ration of the lattice complex belongs to a limiting 
complex. Examples: (1) Ira3 24(g) Oyz with limiting 
complexes Im3m 24(h) for y = z, and Pm3m 3(c, d) 
for y = z = ~ ;  (2) P4/mmm 8(r) xxz with limiting 
complexes P4/mmm 4(j, k) for z=-~, P4/mmm 

1 2(g,h) for x = ] ,  P4/mmm l ( a - d )  for x = z = z ,  
Pm3m 8(g) for a = c and x =  z, and Pm3rn l(a, b) 

1 for a = c and x =  z=z.  
The comparison of an orbit type with the set of 

crystallographic orbits corresponding to its lattice 
complex, i.e. the set of orbits referring to the respective 
class of configuration-equivalent types of Wyckoff 
sets, is a little bit more complicated, because the orbit 
type may as well be more comprehensive as less 

* After the submission of our manuscript we received informa- 
tion on the thesis of Steinmann (1984), which contains similar 
considerations. The comparison with his results revealed an error 
in our original list. 
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comprehensive. Again the concept of limiting com- 
plexes and comprehensive complexes elucidates the 
interrelation. 

Let A be a lattice complex with a limiting complex 
B and a comprehensive complex C. The respective 
orbit types will be designated A, B and C, too. 
[Example: A =  Im3m 24(h) 0xx; B =  Pm3m 3(c, d) 

11 ~ ,  ~00; C = Im3 24(g) Oyz.] Then a crystallographic 
orbit from any Wyckoff position of lattice complex 
A only belongs to orbit type A if it does not corre- 
spond to a point configuration of the limiting complex 
B. [Only crystallographic orbits of Im3m 24(h) with 
x # ¼ belong to orbit type Im3m 24(h).] Those crys- 
tallographic orbits of lattice complex A, however, that 
do correspond to the limiting complex B do not 
belong to orbit type A but to orbit type B. [All 
crystallographic orbits from Im3m 24(h) with x =¼ 
refer to lattice_complex Im3m 24(h) but belong to 
orbit type Pm3m 3(c, d).] On the contrary, those 
orbits of lattice complex C that also correspond to 
the limiting complex A of C belong to orbit type A, 
but not to orbit type C. [All crystallographic orbits 
of Im3 24(g) Oyz with y = z refer to lattice complex 
Im3 24(g) but belong to orbit type Im3m 24(h) or, 
if y= z=¼, to Pm3m 3(c, d).] 

For the comparison of lattice complexes and orbit 
types the concept of non-characteristic orbits is less 
helpful than the concept of limiting complexes. In 
terms of lattice complexes, there exist two basically 
different reasons for a crystallographic orbit to be 
non-characteristic: 

(1) The crystallographic orbit under consideration 
belongs to a non-characteristic type of Wyckoff sets 
of a lattice complex. Then this orbit - together with 
all other crystallographic orbits out of its type of 
Wyckoff sets - is non-characteristic. Characteristic 
crystallographic orbits always stem from characteris- 
tic Wyckoff sets of lattice complexes. 

(2) The crystallographic orbit under consideration 
stands out with respect to the inherent symmetry of 
its point configuration compared with the other orbits 
out of its type of Wyckoff sets, i.e. it corresponds to 
a limiting complex. Then this orbit together with all 
other orbits of that limiting complex is non-charac- 
teristic. 

As a consequence, three kinds of non-characteristic 
orbits may be distinguished: (1) those that belong to 
a non-characteristic Wyckoff set, but do not corre- 
spond to a limiting complex [example: all orbits from 
Pm3 6(e, h)]; (2) those that belong to a characteristic 
Wyckoff set, but correspond to a limiting complex 
[examples: Pm3m 8(g) xxx with x=~;  P4/mmm 
l(a, b) with a = c]; (3) those that belong to a non- 
characteristic Wyckoff set and, in addition, corre- 
spond to a limiting complex [example: Pm3 8(i) xxx 
with x = ¼]. 

As these considerations prove, limiting complexes 
and non-characteristic orbits do not correspond to 

each other. Therefore, a statement by Engel (1983) 
proposing this correspondence is not correct.* 

The concept of lattice complexes and limiting com- 
plexes on the one hand and of orbit types and non- 
characteristic orbits on the other are complementary 
in a certain sense: it is possible to derive all orbit 
types and all non-characteristic orbits from the com- 
plete knowledge of lattice complexes and limiting 
complexes and vice versa. Unfortunately, however, 
full information is available neither on limiting com- 
plexes nor on non-characteristic orbits, as far as is 
known by the authors. 

The assignment of all Wyckoff positions to lattice 
complexes has been done by Hermann in IT (1935). 
This information has also been given by Fischer, 
Burzlaff, Hellner & Donnay (1973) and in IT (1983). 
The limiting complexes of the cubic lattice complexes 
have been derived by Koch (1974). This information 
has been supplemented by Barth (1980) who tabu- 
lated the (cubic and non-cubic) comprehensive com- 
plexes of the cubic lattice complexes. Barth's tables 
also contain the corresponding conditions for the 
metrical and coordinate parameters. The determina- 
tion of the other comprehensive complexes has not 
been done so far. 

Extensive tables by Engel, Matsumoto, Steinmann 
& Wondratschek (1984) contain information on the 
orbit types for part of the non-characteristic orbits, 
i.e. for such non-characteristic orbits that refer to 
special coordinates only. The further non-charac- 
teristic orbits, which are based on specialized metrical 
parameters of their generating space groups or on the 
simultaneous specialization of metrical and coordi- 
nate parameters, have not been determined so far. 

The special, but not exceptional, case that a non- 
characteristic orbit is only produced if both, coordi- 
nates and metric, are specialized deserves extra con- 
cern. The crystallographic orbits from R3 6(f) xyz 
with x = ¼, y = 0, z = ½ or with x = ¼, y = ½, z = 0 and 
with the rhombohedral angle a = 90 ° may be used as 
an example. The inherent symmetry_ of the corre- 
sponding point configurations is Pm3n 6(c, d) (the 
position of the Cr atoms in the crystal structure of 
Cr3Si). Accordingly, the lattice complex R3 6(f) con- 
tains Pm3n 6(c, d) as limiting complex. Pm3n 6(c, d) 
shows special integral reflection conditions (hkI: h + 
k+l=2n  or h = 2 n + l ,  k=4n, l = 4 n + 2 ;  h, k, I per- 
mutable), which of course also hold for all non- 
characteristic orbits of that orbit type. As geometrical 
structure factors are independent of metrical para- 
meters, these reflection conditions are even valid for 
crystallographic orbits from R3 6(f) with a ~ 90 °, if 
only the coordinates are specialized to ¼, 0, ½ or ~, ½, 0. 

In general, the following statement holds: If a 
lattice complex causes special reflection conditions 
then exactly these reflection conditions are also valid 

* The authors of the present paper never made such a statement. 
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for any crystallographic orbit that refers to a compre- 
hensive complex of that lattice complex if, in addi- 
tion, it may be described by the same coordinate 
triplets as an orbit of the regarded lattice complex. 

The authors thank the unknown referee of this 
paper for his helpful and encouraging comments. 

References 
BARTH, H.-U. (1980). ~oer umfassende Komplexe kubischer Gitter- 

komplexe. Diplomarbeit, Univ. Miinster. 
BURZLAFF, H. • ZIMMERMANN, H. (1974). Z. Kristallogr. 139, 

252-269. 
ENGEL, P. (1983). Z. Kristallogr. 163, 243-249. 
ENGEL, P., MATSUMOTO, T., STEINMANN, G. & WONDRAT- 

SCHEK, H. (1984). Z. Kristallogr. Suppl. No. 1. 
FISCHER, W., BURZLAFF, H., HELLNER, E. & DONNAY, J. D. 

H. (1973). Space Groups and Lattice Complexes. Natl Bur. Stand. 

(US) Monogr. No. 134. Washington: National Bureau of Stan- 
dards. 

FISCHER, W. & KOCH, E. (1974). Z. Kristallogr. 139, 268-278. 
FISCHER, W. & KOCH, E. (1978). Z. Kristallogr. 147, 255-273. 
FISCHER, W. & KOCH, E. (1983). Acta Cryst. A39, 907-915. 
HERMANN, C. (1935). Gitterkomplexe. In Internationale Tabellen 

zur Bestimmung yon Kristallstrukturen, Vol. I. Berlin: Borntr~iger. 
International Tables for Crystallography (1983). Vol. A. Dordrecht, 

Boston: D. Reidel. 
Internationale Tabellen zur Bestimmung yon Kristallstrukturen 

(1935). Vol. I. Berlin: Borntr/iger. 
KOCH, E. (1974). Z. Kristallogr. 140, 75-86. 
KOCH, E. & FISCHER, W. (1975). Acta Cryst. A31, 88-95. 
KOCH, E. & FISCHER, W. (1978). Z. KristaUogr. 147, 21-38. 
MATSUMOTO, T. & WONDRATSCHEK, H. (1979). Z. Kristallogr. 

150, 181-198. 
STEINMANN, G. (1984). Kristallographische Orbits im 

dreidimensionalen Raum. Dissertation, Univ. Karlsruhe. 
WONDRATSCHEK, H. (1976). Z. Kristallogr. 143, 460-470. 
WONDRATSCHEK, H. (1980). Commun. Math. Chem. 9, 121- 

125. 

Acta  Cryst. (1985). A41, 426-433 

Restrained Structure-Factor Least-Squares Refinement of Protein Structures 
Using a Vector Processing Computer 

BY ILYAS HANEEF, DAVID S. Moss,* MICHAEL J. STANFORD AND NIVEDITA BORKAKOTI 

Depar tment  o f  Crystallography, Birkbeck College, Male t  Street, London W C 1 E  7 H X ,  England  

(Received 2 August 1983; accepted 20 March 1985) 

Abstract 

A least-squares refinement program R E S T R A I N  has 
been developed, which is capable of refining 
macromolecular structures using structure ampli- 
tudes, phases from isomorphous replacement or 
anomalous scattering and pseudo-energy restraints. 
In addition to positional parameters and isotropic 
temperature factors, anisotropic mean-square dis- 
placements may be refined either as individual atomic 
U tensors or as TLS tensors applied to groups of 
atoms. Anharmonic effects may be handled by coup- 
ling together occupancies to enable the electron 
density of an atomic group to be distributed over 
more'than one subsite. A novel way of restraining 
groups of atoms to be planar has been developed that 
does not require dummy atoms and does not restrain 
the plane to lie in its current orientation. 

Introduction 

Techniques for the refinement of macromolecular 
structures from diffraction data using geometrical 
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restraints are now well established. Before 1976 most 
refinements of protein structures were undertaken 
using difference Fourier methods. Several techniques 
for automat ing this approach were developed 
(Diamond, 1971 ; Freer, Alden, Carter & Kraut, 1975) 
and real-space refinement has recently been applied 
to the protein component of a virus (Jones & Liljas, 
1984). 

Reciprocal-space least-squares refinement tech- 
niques followed later and imposed geometrical 
restraints on the positional parameters in terms of 
bond lengths, bond angles and non-bonded interac- 
tions. Systems that have minimized functions that 
contain both structure amplitude and restraint terms 
(Konnert, 1976; Sussman, Holbrook, Church & Kim, 
1977; Moss & Morffew, 1982) have been widely used 
in the refinement of protein and RNA structures (see, 
for example, Borkakoti, Palmer, Haneef & Moss, 
1983; Sielecki, Hendrickson, Broughton, Delbaere, 
Bryer & James, 1979; Girling, Houston, Schmidt & 
Amma, 1980). Other systems, which impose the 
restraints in a separate least-squares or energy- 
minimization step outside the structure-amplitude 
refinement (Agarwal, 1978; Jack & Levitt, 1978), have 
also been successfully employed (Baker, 1980). 
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